邮箱登录 | 所务办公 | 收藏本站 | English | 中国科学院
 
首页 计算所概况 新闻动态 科研成果 研究队伍 国际交流 技术转移 研究生教育 学术出版物 党群园地 科学传播 信息公开
国际交流
交流动态
学术活动
学术交流
现在位置:首页 > 国际交流 > 学术活动
Talent Analytics: Prospects and Opportunities
2017-05-27 | 【 【打印】【关闭】

  报告题目:Talent Analytics: Prospects and Opportunities

  时间:2017年5月23日(周二)上午9:30

  地点:计算所四层报告厅

  报告人:熊辉教授 美国罗格斯-新泽西州立大学

  Abstract: The big data trend has made its way to talent management. Indeed, the availability of large-scale human resources (HR) data provide unparalleled opportunities for business leaders to understand talent behaviors and generate useful talent knowledge, which in turn deliver intelligence for real-time decision making and effective people management at work. In this talk, I will introduce the state-of-the-art techniques used to evaluate the management performance, recruit and retain great people, enhance talent development, and demonstrate how these techniques are used at cutting-edge companies. In particular, I will explain how data analytic techniques can be used on people-related issues, such as recruiting, performance evaluation, talent retention, talent development, job matching, team management, and organizational stability analysis. Finally, I will present two case studies: 1) recruitment market trend analysis with sequential latent variable models, and 2) talent circle detection in job transition networks.

  报告人简介:熊辉教授目前为美国罗格斯-新泽西州立大学罗格斯商学院管理科学与信息系统系副系主任、罗格斯大学信息安全中心主任、正教授 (终身教授)、RBS院长讲席教授,并担任中国科学技术大学大师讲席教授。熊辉教授在研究领域成绩斐然,获得的部分奖项包括ACM杰出科学家,IBM 创新奖, 罗格斯-新泽西州立大学最高学术奖—the Rutgers University Board of Trustees Research Fellowship for Scholarly Excellence (2009)。 主要学术成果包括:1本专著;3本编著,其中Encyclopedia of GIS(Springer)被评为最受欢迎前十名的Springer华人作者的计算机著作; 学术论文200余篇,其中有70余篇发表在包括Data Mining and Knowledge Discovery Journal、IEEE Transactions on Knowledge and Data Engineering、VLDB Journal、IEEE Transactions on Fuzzy Systems、Machine Learning、IEEE Transactions on Systems, Man, and Cybernetics - Part B、IEEE Transactions on Mobile Computing在内的顶级权威刊物上,有39篇发表在数据挖掘的顶级学术会议 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)上。

 
网站地图 | 联系我们 | 意见反馈 | 所长信箱
 
京ICP备05002829号 京公网安备1101080060号